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Adaptive Wavelet Networks for Power-Quality
Detection and Discrimination in a Power System

Chia-Hung Lin and Chia-Hao Wang

Abstract—This paper proposes a model of power-quality de-
tection for power system disturbances using adaptive wavelet
networks (AWNs). An AWN is a two-subnetwork architecture,
consisting of the wavelet layer and adaptive probabilistic network.
Morlet wavelets are used to extract the features from various
disturbances, and an adaptive probabilistic network analyzes the
meaningful features and performs discrimination tasks. AWN
models are suitable for application in a dynamic environment,
with add-in and delete-off features using automatic target ad-
justment and parameter tuning. The proposed AWN has been
tested for the power-quality problems, including those caused by
harmonics, voltage sag, voltage swell, and voltage interruption.
Compared with conventional wavelet networks, the test results
showed accurate discrimination, fast learning, good robustness,
and faster processing time for detecting disturbing events.

Index Terms—Adaptive probabilistic network, adaptive wavelet
network (AWN), Morlet wavelet, power quality.

I. INTRODUCTION

POWER quality has attracted considerable attention from
both utilities and users due to the use of many types of

sensitive electronic equipment, which can be affected by har-
monics, voltage sag, voltage swell, and momentary interrup-
tions. These disturbances cause problems, such as overheating,
motor failures, inaccurate metering, and misoperation of pro-
tective equipment. Voltage swell and sag can occur due to light-
ning, capacitor switching, motor starting, nearby circuit faults,
or accidents, and can also lead to power interruptions. Harmonic
currents due to nonlinear loads throughout the network can also
degrade the quality of services to sensitive high-tech customers,
such as Taiwan’s science parks in Xin-Zhu and Tai-Nan. Re-
cently, the massive rapid transit system (MRT) and high-speed
railway (HSR) have been rapidly developed, facilitated by the
widespread use of semiconductor technologies in the autotrac-
tion systems. As a result, the harmonic distortion level has wors-
ened due to these increased uses of electronic equipment and
nonlinear loads. Ensuring power quality (PQ) as well as pro-
viding harmonic and voltage disturbance detection is then in-
creasingly important.

To ensure PQ, a system must be able to monitor, locate,
and classify disturbances by measurement approaches and
instruments. These instruments must collect large amounts of
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measured data such as voltages, currents, and occurrence times.
However, they do not automatically classify disturbances and
they require offline analysis from the recorded data. Fast Fourier
transformation (FFT) has been applied to steady-state phenom-
enon but short-time duration disturbances require short-time
Fourier transformers (STFTs) to aid the analysis. The choices
for size of the time window affect both the frequency and time
resolution when using STFT. In order to improve these limi-
tations, wavelet theory [1] has been applied to model several
short-term events. It thus allows for the convenient reconstruc-
tion of short duration with a tool to examine the effects of the
short-term transient effects on the power system. For this, a
method based on wavelet transformation (WT) for PQ analysis
has been presented [2]. This method combines the use of the
continuous wavelet transform (CWT) and its modulus maxima
properties together with the multiresolution signal decomposi-
tion and reconstruction by means of the discrete-time wavelet
transform (DTWT).

Wavelet networks (WNs) were initially designed to classify
different types of disturbances [3], [4]. With multiresolution and
localization of the wavelets [5] and pattern recognition capa-
bility of the artificial neural network (ANN), WNs have become
important for signal and pattern analysis. However, ANNs have
some drawbacks, including the determination of the network ar-
chitecture and network parameters assignment. When networks
are applied in dynamic environments, especially for online ap-
plications, traditional networks can become the bottleneck in
adaptive applications. Accordingly adaptation methods, such as
probabilistic and general regression neural networks, have been
presented [6]–[8] and are recognized as having an expandable or
reducible network structure, fast learning speed, and promising
results. In these adaptation methods, the choice of smoothing
parameter has significant effects on the network outcome, and
the parameter is usually based on the overall statistical calcu-
lation from precollected training data. However, this approach
may not be suitable to apply in a dynamical modeling environ-
ment, since the model needs to change pattern nodes with add-in
or delete-off features. Therefore, a dynamic model needs a non-
statistical method as well as automatic adjustment of the targets
and smoothing parameters for dynamic process technique [10].

In this paper, an integrated model of the adaptive wavelet net-
work (AWN) is proposed to discriminate PQ disturbances, in-
cluding harmonic and voltage fluctuation phenomena, by com-
bining the Morlet wavelet and adaptive probabilistic network.
AWN consists of two subnetworks connected in cascade. In the
wavelet layer, the activation functions take the Morlet wavelets
and are responsible for extracting features from unknown sig-
nals. Following the probabilistic network is an adaptive network

0885-8977/$20.00 © 2006 IEEE



LIN AND WANG: ADAPTIVE WAVELET NETWORKS FOR POWER-QUALITY DETECTION 1107

with automatic parameters for tuning and performing the dis-
crimination task. A sample power system is presented here as
an example, and computer simulations show computational ef-
ficiency, fast learning, accurate discrimination, and good robust-
ness for different tests.

II. ADAPTIVE WAVELET NETWORK (AWN)

A. Morlet Wavelet

In applications of signal analysis, it is necessary to extract
signal features with Fourier transformation, but it is only a time-
domain transform, which has no time-frequency localization
features. Fourier analysis consists of breaking up a signal into si-
nusoidal waves of various frequencies. Similarly, wavelet anal-
ysis is the breaking up of a signal into dilations and transla-
tion versions of the original wavelet, referred to as the mother
wavelet. The wavelets must be oscillatory, have amplitudes that
quickly decay to zero, and have at least one vanishing moment.
The Morlet wavelet is the modulated Gaussian function, so this
family is built starting from the following complex Gaussian
function [9]:

(1)

The Fourier transform of is

(2)

According to (2), suppose , then , that is
, which represents the collection of all mea-

surable functions in the real space, and satisfies the ad-
missibility condition. When , then the Morlet wavelet
becomes

(3)

where and are the real and imaginary part, respec-
tively. The function of is also an appropriate admissible
wavelet. When , then becomes the mother
wavelet with dilation parameter and translation parameter

(4)

By adjusting the parameters and , the formulas and
have localization performance in both time and fre-

quency. Fig. 1 shows the wavelets with various dilation param-
eters ( , 2, 3) and translation parameters ( , 0, 1).
In this paper, both real and imaginary parts of the are
used to extract features from the unknown signals in
order to extract the features of harmonic and voltage fluctua-
tion phenomena in preliminary analysis. They are similarly ap-
plied to in order to extract the features of the distur-
bances, including harmonics, voltage sags, voltage swells, sags

Fig. 1. Wavelets with various dilations and translations.

Fig. 2. Architecture of the AWN.

or swells involving harmonics, and momentary interruptions
in detailed analysis. Therefore, the activation functions of the
wavelet nodes are derived from the mother wavelet
for , where is the number of the wavelet
nodes. The input vector is con-
nected to the wavelet network, and inputs are the sample data
from the distorted wave as shown in Fig. 2.
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B. Adaptive Probabilistic Network

In this paper, an integrated wavelet network is proposed to
discriminate PQ disturbances, and this network combines the
properties of the Morlet wavelets with the advantages of proba-
bilistic network [6]–[8]. The second subnetwork with a hidden,
summation, and output layer is shown in Fig. 2. The number of
hidden nodes is equal to the number
of training examples, while the number of summation nodes
and output nodes is equal to the types
of disturbances. The weights (connecting the th hidden
node and the th wavelet node) and (connecting the th
summation node and the th hidden node) are determined by
input–output training pairs. The final output of node is [7]

(5)

(6)

However, there are no means of generating an optimal , and
adjusting the would refine the discrimination accuracy in the
dynamic environment. The optimal is intended to minimize
the predicted squared error function [10], which is defined as

(7)

where is the desired output for input vector . The first par-
tial derivatives of error are shown in (8)

(8)

The parameter is then updated by using pattern learning, as
in (9)

(9)

where is the learning rate, and is the iteration number. The
algorithm of the AWN contains two stages: the learning stage
and recalling stage, as detailed below.

Learning Stage:

Step 1) For each training example
for

and , create weights
between wavelet node and hidden node by

(10)

(11)

Fig. 3. One-line diagram of the 14-bus power system.

where is the dilation parameter ; is a se-
quence of samples obtained from an unknown signal

; is the translation parameter, a sequence of sam-
ples obtained from fundamental wave in the time
domain; is the number of sampling points; is the
sampling period; and is a by
matrix.

Step 2) Create weights between hidden node and
summation node by

(12)

where the values of are the predicted outputs as-
sociated with each stored pattern , and

is the by matrix. Connection weights from
hidden nodes to summation node are set to 1.

Recalling Stage:

Step 1) Get network weights and .
Step 2) Apply test vector

to the AWN. Compute the output of wavelet node

(13)

Step 3) Compute the output of hidden node by the
Gaussian activation function

(14)

where , the
optimal value can be obtained by using (8) and (9)
based on the minimum misclassification error.

Step 4) Compute the outputs of node by using (6).



LIN AND WANG: ADAPTIVE WAVELET NETWORKS FOR POWER-QUALITY DETECTION 1109

TABLE I
HARMONIC CURRENT COMPONENTS IN PERCENTAGE BY FIELD TESTS

III. DISTURBANCE EVENTS DETECTION SYSTEM (DEDS)

A. Training Patterns Creation

In this paper, disturbance events [11] are considered, including
harmonics, voltage sag and swell, and momentary interruptions.
Harmonic currents and voltages are caused mostly by electronic
equipment, and harmonic events may occur over a long dura-
tion. Voltage sag may be caused by the switching operations,
starting large motor loads, and nearby circuit faults. Voltage sags
may drop down to 70% of the nominal result due to heavy load
switching or fault conditions with a duration up to 0.5 s. Long
duration voltage sags down to 80% of the nominal value have a
typical duration up to 10 s. Voltage swells may occur when large
loads are removed from the system and when a single-phase fault
occurs in the distribution part of the system. Interruptions are
typically the result of occurrence and subsequent clearing of
faults in the distribution portion of the system, and the voltage
magnitude is always less than 10% of the nominal voltage.
These events are caused by faults, equipment failures, and
control malfunctions. A total interruption could be tolerated by
the protection equipment for up to 20 ms.

A 14-bus system is used for the test example, as shown in
Fig. 3 [12]. The system has five generator buses, 15 lines, five
transformers, and eight nonlinear devices. The buses with har-
monic sources are the buses used to take measurements for
observation, and there are eight observation locations in this
system. At each observation location, harmonic and voltage
fluctuation phenomena are considered, as well as the har-
monic source causing voltage distortion for neighboring buses.
Table I shows the harmonic current components as percent-
ages of each harmonic source by the field test. With harmonic
power flow [13], we can simulate harmonic voltages at se-
lected observation locations. We can also consider various
harmonic load combinations and work durations at each ob-
servation location (i.e., combinations {Bus13}, {Bus13,Bus6},
{Bus13,Bus11}, {Bus13,Bus12}, {Bus13,Bus6,Bus11},
{Bus13,Bus6,Bus12}, {Bus13,Bus11,Bus12} at Bus13). In
addition, we can determine voltage fluctuations including sags,
swells, sags or swells involving harmonics, and voltage inter-
ruptions. Training data can be systematically collected at Bus13
with input/output pairs training data. Each input is conducted
within the period of sampling data from distorted waves. The
four sample rates we consider are 1.44, 2.88, 5.76, and
11.52 kHz, and the number of sample points are 24, 48,
96, and 192. Equation (10) with sequencing preprocess is
applied on various distorted waves for extraction features. The
wavelet layer eliminates the 60-Hz sinusoid components, and
the remaining components are reconstructed by the wavelet
nodes to form the WT patterns. The various WT patterns reveal

Fig. 4. WT patterns with various dilations and a sampling rate of 1.44 KHz.

the rise or dip characteristics for voltage fluctuation, and the
sawtooth characteristics for harmonic fluctuation. For example,
Fig. 4 has dilations , 2, 3 and shows the WT patterns with
sample rates 1.44 kHz at observation location Bus13.

According to the various patterns, the weights between
wavelet nodes and hidden nodes are determined by training
data. The weights between hidden nodes and summation nodes
are the predicted outputs associated with each input pattern by
encoding signal “1” for “Abnormal”, and “0” for “Normal.” At
each observation location, we have the following events as:

• normal: the pattern is [0000];
• harmonics: the pattern is [1000];
• voltage sag: the pattern is [0100];
• voltage swell: the pattern is [0010];
• voltage interruption: the pattern is [0001];
• voltage sag involving harmonic: the pattern is [1100];
• voltage swell involving harmonic: the pattern is [1010].
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Fig. 5. Flowchart of the DEDS at each observation location.

B. Flowchart of the DEDS

The flowchart of the proposed DEDS is shown in Fig. 5.
At each observation location (Loc-4, Loc-6, Loc-7, Loc-9,
Loc-10, Loc-11, Loc-12, and Loc-13), bus voltage records
are taken from the SCADA interface and each full cycle of a
distorted wave is used for detection by AWN. The amplitude
signals from distorted waves are
sequentially input to the AWN (AWN-4, AWN-6, AWN-7,
AWN-9, AWN-10, AWN-11, AWN-12, and AWN-13). When
the periodic sampling data are provided, find the buses with
total harmonic voltage distortion . If sampling
data with voltages varying due to great load changes (half- or
over-load), such as the changes of harmonic components or the
ranges of voltage magnitude, learning data can be continually
formed for the data update to the current database. In a real
power system, learning data could be periodically collected
by a portable recording device placed at observation location
[14]. The new learning sets of data are presented to the AWN,
including new features or events, the corresponding patterns
nodes will continue to grow, and use (10), (11), and (12) to
create the network weights without reiteration to corrupt the
previous database or structure. This process results in very fast
training, and the network is adaptive to data changes by tuning
smoothing parameters. After the learning stage is finished,
the proposed AWN can still work in a new operating mode.
In power quality detection (PQD), the wavelet layer is used
to extract the features, and the features will be reconstructed
for various patterns. The following probabilistic network is

TABLE II
RELATED PARAMETERS SETTING OF THE AWN

Note: W-H-S-O: Wavelet-Hidden-Summation-Output Node.

responsible for the final discrimination of the disturbance
events. Output vector is evaluated by
the AWN, and a threshold value 0.5 is designed for element
( , 2, 3, 4) to separate normal from abnormal values. The
output values are between 0 and 1, where a value close to 1
means “Normal,” 0 means “Abnormal,” and then indicates
the possible disturbing events at the observation location.

IV. SIMULATION RESULTS AND DISCUSSION

In a 14-bus system, most harmonics are related to power rec-
tifiers or converters with harmonic current components in per-
centages as shown in Table I. With fundamental and harmonic
power flow for various loading combinations, bus voltages can
be calculated. At each observing location, we have a 55 set of
training data for the AWN with the following events:

• harmonics: harmonic load combinations with seven sets of
training data ;

• voltage sag or sag involving harmonics: voltage reduction
between 10 30% in magnitude with 22 sets of training
data ;

• voltage swell or swell involving harmonics: voltage rise
between 10 30% in magnitude with 22 sets of training
data ;

• voltage interruption: voltage magnitude less than 10% of
nominal with three sets of training data ;

• normal: normal sinusoid wave with 1 set of training data
.

In this paper, DEDS was used to monitor eight locations for
detection disturbances. According to the four types of sampling
rates, four models of the AWN are proposed, as shown in Table II.
For comparison purposes, we have also applied the WBPN com-
posed of Morlet wavelets in the wavelet layer and conventional
neural network. For the second subnetwork, a back-propagation
neural network (BPN) is used for training with the back-prop-
agation learning algorithm. Only one hidden layer is used, and
the number of hidden nodes is determined by the experience
formulas [15]. The DEDS was designed on a PC Pentium-IV 2.4
GHz with 480-MB random-access memory (RAM) and Matlab
software. To show the effectiveness of the proposed DEDS,
three case studies are chosen for demonstration.

A. Learning Performance Tests

With Model I, Fig. 6(a) and (b) show the smoothing parame-
ters and squared errors versus learning cycles, respectively. The
discrimination performance of the AWN is affected by the width
of the Gaussian activation function. As the width of Gaussian
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(a)

(b)

Fig. 6. (a) Smoothing parameters versus learning cycles. (b) Squared errors
versus learning cycles.

TABLE III
COMPARISON OF AWN WITH WBPN

function decreases, decision boundaries can become increas-
ingly nonlinear. For a very narrow Gaussian function, the net-
work approaches a nearest-neighbor classifier. Equations (8)
and (9) are used to find near-optimum smoothing parameters
that minimize the training-data error of the AWN as the number
of training data increases from to . The
corresponding hidden nodes will continue to grow from 18 to
55, and construct the network weights without any iteration
process. This process results in very fast training, and the net-
work is adaptive to change patterns with add-in (or delete-off)
features by tuning smoothing parameters for six learning stages.
Fig. 6(b) shows the final squared errors after the training AWN
has been responsible for determining the smoothing parameters.
For squared error , the proposed method rapidly con-
verges to the nearest local minimum for less than ten learning
cycles in a shorter processing time.

Table III compares the learning performance of the AWN and
WBPN. Subnetwork BPN weights and learning rates were de-
termined by a tedious and trial-and-error procedure. Learning

(a)

(b)

Fig. 7. (a) Detection confidence versus harmonic variant. (b) Detection
confidence versus voltage magnitude variant.

rates , 0.5, and 0.8 were selected for training. With
various tests, we can see that the training time of AWN sub-
stantially outperformed WBPN. The detection confidence of
AWN is higher than the WBPN. Although the AWN topology
is slightly greater than WBPN, AWN has a fast learning process
that does not need any iteration for updating weights, a flexible
hidden nodes mechanism with add-in or delete-off, and auto-
matic adjustment of the targets and parameter . With the same
training data, the proposed AWN shows better performance than
WBPN.

B. Discrimination Performance Test

To test the robustness of the proposed method in the oper-
ating mode, testing data (never presented to the training data)
were produced with harmonic voltages varying from 100%
to 100% and voltage magnitudes varying from 0 to 1.8 p.u.
at the Loc-13, where symbol “ ” means harmonic increase
and symbol “ ” means harmonic decay due to load changes.
Fig. 7(a) shows the confidence value versus the harmonic
variant with average output values for seven trained data and
154 untrained data. The test shows that the proposed method has
the high detection confidence for harmonic voltages variances
upon 60% by using the threshold value of 0.5. Fig. 7(b) shows
the confidence value versus voltage magnitude variance with
average output values for 47 trained data and 107 untrained
data including sag, sag involving harmonics, swell, swell
involving harmonics, and voltage interruption. With training
data for “voltage sag” having a specific sag range between 0.7
and 0.9 p.u., voltage magnitudes between 0.50 and 0.95 p.u.
were strongly identified as “sag events” by using the threshold
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Fig. 8. Time-domain wave andWT patterns at Bus12.

value of 0.5. The same results can be also observed for “voltage
swells” between 1.05 and 1.8 p.u. Voltage interruption was
gradually identified with the voltage magnitude of less than
0.45 p.u.

In the computer simulation for changing traced disturbances,
testing data were produced with data-varying voltage magni-
tudes and harmonic components; and then Gaussian noises
were added randomly with zero mean and 10% variance.
With only 48 or 55 training data, the proposed method can work
in an environment with load changes, magnitude variances, and
data with noise influence. The test confirms that the proposed
method has a better capability for enhancing the discrimination
performance.

C. Case Study—Multiple Harmonics and Voltage Sag
Involving Harmonics

Eight observation locations were used, as shown in Fig. 3.
With fundamental and harmonic power flow, we can simulate
bus voltages at observation locations. Time-domain analysis
was conducted to detect the distorted waves with 50 cycles
(about 0.8 s). Periodic sampling was done with sampling rate

and sample points . With multiple
harmonic sources at Bus6, Bus9, Bus12, and Bus13, sam-
pled data were then applied to each AWN (AWN-6, AWN-9,
AWN-12, AWN-13) for detection. For example, let the voltage
sags caused by heavy motor loads at Bus12, and multiple
harmonic sources be at Bus6, Bus9, and Bus13. Fig. 8 shows
the waves of voltage sag within about 30 cycles. When the
voltage sag suddenly reaches 12%, periodic sampling is then
performed. The wavelet layer reconstructs the voltage features
to WT patterns as shown in Fig. 8. patterns show the times
for starting and ending of occurrences, show characteristics of
harmonics in normal work duration, and extract the compound
characteristics of voltage sag involving harmonics of about
30 cycles. AWNs can monitor the overall duration including
the beginning and ending cycles. For 50 detection cycles,
Fig. 9 shows the detection results at Bus6, Bus9, Bus12, and
Bus13. This confirms that the proposed models have a higher
confidence value of detection results in the tests.

(a)

(b)

Fig. 9. (a) Detection results at Bus12. (b) Detection results at Bus6, Bus13,
and Bus9.

V. CONCLUSION

The disturbance event detection system with AWNs has
been developed in this paper. AWN combines the use of Morlet
wavelets and adaptive probabilistic networks for discriminating
PQ disturbances including harmonics and voltage fluctuation
phenomena. The proposed AWN model has a dynamic and
fast adaptation algorithm with continuity add-in or delete-off
features by automatically tuning the targets and smoothing
parameters of hidden nodes. Some advantages of the AWNs
are:

• the training processes are very fast compared with other
multilayer wavelet networks;

• the network architecture can be built using adaptive
training algorithms, and can avoid the determination of
network weights by the trial-and-error procedure;

• by enhancing the particular features of disturbance events,
the proposed method is able to improve the discrimination
performance;

• AWN has good detection accuracy, good robustness, and
classification performance;

• DEDS with AWNs can simultaneously monitor PQ at each
observation location.

Computer simulation shows that DEDS could be very ef-
fective to detect PQ disturbances. For a well-dispatched power
system, this concept will be used in a real-time and an offline
analysis tool, and SCADA/EMS will be integrated without extra
devices.
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Fig. 10. Flowchart of harmonic power flow.

APPENDIX

Harmonic power-flow models [13] were used in this paper.
Transmission lines were modeled as pi-equivalent circuits;
transformers were considered as simplified series resistances
and reactances; shunt magnetizing components were ignored;
and the leakage inductances were assumed to be constant.
Capacitors were considered constant with impedances varying
with frequencies. The generators were series impedances of
resistance and reactance for fundamental load flow. For har-
monic load-flow analysis, generators were modeled as sub-
transient reactances. Linear loads were represented as series
impedances of resistance and reactance. Nonlinear loads were
treated as harmonic current sources. Harmonic current com-
ponents were used by field record data. The flowchart of har-
monic power-flow analysis developed in this paper is shown
in Fig. 10.
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